Part Number Hot Search : 
V1015EIP FST16 CY621 MU136 DG309BAK NJU7211U F2001 C3148
Product Description
Full Text Search
 

To Download IRFB4510GPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  4/11/12 www.irf.com 1 hexfet   power mosfet s d g benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  halogen-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits to-220ab IRFB4510GPBF s d g d IRFB4510GPBF gds gate drain source  absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) a i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 1.05 r cs case-to-sink, flat greased surface 0.50 ??? c/w r ja junction-to-ambient, to-220  ??? 62 130 see fig. 14, 15, 22a, 22b, 140 3.2 -55 to + 175 20 0.95 10lb  in (1.1n  m) 300 max. 62 44 250 v dss 100v r ds(on) typ. 10.7m max. 13.5m i d (silicon limited) 62a

 2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.192mh r g = 25 , i as = 37a, v gs =10v. part not recommended for use above this value.  i sd 37a, di/dt 1550a/ s, v dd v (br)dss , t j 175c.  pulse width 400 s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .    
    
  static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v ( ( ( a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 0.6 ??? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 100 ??? ??? s q g total gate charge ??? 58 87 nc q gs gate-to-source charge ??? 14 ??? q gd gate-to-drain ("miller") charge ??? 18 q sync total gate charge sync. (q g - q gd ) ??? 40 ??? t d(on) turn-on delay time ??? 13 ??? ns t r rise time ??? 32 ??? t d(off) turn-off delay time ??? 28 ??? t f fall time ??? 28 ??? c iss input capacitance ??? 3180 ??? pf c oss output capacitance ??? 220 ??? c rss reverse transfer capacitance ??? 120 ??? c oss eff. (er) effective output capacitance (energy related) ??? 260 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 325 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 62 a (body diode) i sm pulsed source current ??? ??? 250 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 54 81 ns t j = 25c v r = 85v, ??? 60 90 t j = 125c i f = 37a q rr reverse recovery charge ??? 95 140 nc t j = 25c di/dt = 100a/ s  ??? 130 195 t j = 125c i rrm reverse recovery current ??? 3.3 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v ds = 25v, i d = 37a i d = 37a v gs = 20v v gs = -20v mosfet symbol showing the v ds =50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz, see fig.5 v gs = 0v, v ds = 0v to 80v , see fig.1 v gs = 0v, v ds = 0v to 80v  t j = 25c, i s = 37a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 37a  v ds = v gs , i d = 100 a v ds = 100v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c i d = 37a r g =2.7  v dd = 65v i d = 37a, v ds =0v, v gs = 10v 

 www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c 4.0v vgs top 15v 10v 6.0v 5.0v 4.8v 4.5v 4.3v bottom 4.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 175c 4.0v vgs top 15v 10v 6.0v 5.0v 4.8v 4.5v 4.3v bottom 4.0v 2.0 3.0 4.0 5.0 6.0 7.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 50v 60 s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 37a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20406080 q g total gate charge (nc) 0 2 4 6 8 10 12 14 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 37a

 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t j , junction temperature (c) 0 10 20 30 40 50 60 70 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 95 100 105 110 115 120 125 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma 0 20 40 60 80 100 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.7a 12a bottom 37a 110100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc

 www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 37a

 6 www.irf.com  
 
   fig 16. threshold voltage vs. temperature  
   

 
    
   -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100 a i d = 250 a i d = 1.0ma i d = 1.0a 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 20 24 i r r m - ( a ) i f = 37a v r = 80v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 20 24 i r r m - ( a ) i f = 24a v r = 80v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 500 600 q r r - ( n c ) i f = 37a v r = 80v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 500 600 q r r - ( n c ) i f = 24a v r = 80v t j = 125c t j = 25c

 www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit fig 24a. gate charge test circuit fig 24b. gate charge waveform fig 21.    
     for n-channel hexfet   power mosfets  
     ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period !   
  ! + - + + + - - -        ?      !  ?   " #$## ?        %  && ? #$##'$

   1k vcc dut 0 l s 20k vds vgs id vgs(th) qgs1 qgs2 qgd qgodr r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as v gs v dd v ds l d d.u.t + - second pulse width < 1 s duty factor < 0.1% v gs v ds 90% 10% t d(on) t d(off) t r t f

 8 www.irf.com to-220ab packages are not recommended for surface mount application. 
     
     

 

 
   
         
    

  data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/12 example: t his is an irf b4310gpbf note: "p" in as s embly line position i ndi cates "l ead - f r ee" international part number rectifier lot code assembly logo y= l as t digit of dat e code : ww= wor k we e k x= f act ory code note: "g" suffix in part number i ndi cates "h al ogen - f r ee" cal e n d ar y e ar


▲Up To Search▲   

 
Price & Availability of IRFB4510GPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X